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Nitric oxide can have both pro-oxidant and antioxidant 
effects on low-density lipoprotein. Nitric oxide does 
not appear to react directly with components of LDL. 
However, in the presence of oxygen (through NO2 and 
N203 formation) or superoxide (through peroxynitrite 
formation) nitric oxide may cause oxidation of the 
lipid, protein and antioxidant components of LDL. 
Conversely, nitric oxide is a potent inhibitor of LDL 
oxidation when initiated by copper ions or by 
azo-initiators. The possible implications of these 
observations to vascular pathology are discussed. 

INTRODUCTION 

The comprehensive and continuing investigation 
of low-density lipoprotein (LDL) oxidation has 
provided an invaluable insight into the mecha- 
nistic complexity of the lipid peroxidation chain 
reaction in a multi-component biological sys- 

The oxidation of LDL has been exten- 
sively studied, mainly because of the potential 
importance of this process in the early stages of 
atherosclerosis.[5r61 In addition to this, LDL 
represents a useful model in which to examine, 
at the molecular level, oxidative and antioxidant 

processes. LDL is a complex particle that consists 
of a phospholipid outer monolayer that en- 
spheres a cholesterol-ester core."] A single mole- 
cule of apolipoprotein B (apo-B) is integrated into 
this lipid droplet, and has structural, recognition, 
and enzymatic activities."r7r81 In addition, LDL 
contains numerous lipid-soluble molecules, 
including vitamin E, ubiquinol and P-carotene, 
which have variable antioxidant properties."] 
This particle is therefore a self-contained model 
for the study of lipid-protein-antioxidant reac- 
tions with respect to lipid peroxidation. 

Nitric oxide is an important regulator of 
vascular diseases. Inhibition of endothelial nitric 
oxide synthase (NOS) enhances atherosclero- 
S~S , '~ ' ' ~ ]  and arginine supplementation inhibits 
and regresses atherosclerosis,[''' presumably by 
enhancing NO formation. Paradoxically, athero- 
sclerotic tissue generates more oxides of nitrogen 
than healthy tissue."'] This suggests that al- 
though nitric oxide synthase activity is up- 
regulated in atherosclerotic tissue, nitric oxide 
is being oxidized before it can exert its bene- 
ficial, anti-atherogenic effects. The most rapid, 
and most likely, scavenger of nitric oxide is 
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594 N. HOGG AND B. KALYANARAMAN 

~ u p e r o x i d e , ' ~ ~ ~ ~ ]  which has been shown to be 
elevated in atherosclerotic tissue."51 Nitric oxide 
reacts with superoxide at a diffusion-controlled 
rate to generate peroxynitrite (Eq. (1)):[13*161 

.NO+ 0, -+ ONOO- (1) 

This review will examine the direct effects of 
nitric oxide and its oxidation products on LDL 
from the perspective of both oxidative chemistry 
and vascular pathology. 

THE REACTIONS OF NITRIC OXIDE WITH 
COMPONENTS OF THE LDL PARTICLE 

Nitric oxide has been reported to have multiple 
effects on LDL or on isolated components of the 
LDL particle. Wang et ~ 1 . " ~  showed evidence that 
nitric oxide could directly oxidize LDL lipid and 
fragment apo-B. Such changes were accompanied 
by a change in electrophoretic mobility consistent 
with lipid oxidation. These investigators used 
dissolved nitric oxide gas (125-500pM) added, 
under anaerobic conditions, in a single addition 
or in aliquots over time. In agreement with this 
report, Chang et ~ 1 . " ~ '  demonstrated that bub- 
bling nitric oxide gas through a solution of LDL, 
for 3 min, followed by 7 days incubation causes a 
reduction in LDL p-carotene content. 

In contrast to these studies are several reports 
that show little, if any, oxidative activity of nitric 
oxide. Darley-Usmar et ~ 1 . ~ ~ ~ '  showed that incuba- 
tion of LDL with the nitric oxide donor S-nitroso- 
N-acetyl penicillamine (SNAP) did not result 
in an alteration in electrophoretic mobility. In 
addition Jessup et ~ 1 . ' ~ ~ ~  demonstrated only the 
ubiquinone content of LDL is significantly 
diminished by addition of up to 200 pM solutions 
of nitric oxide and only above 1OOpM nitric 
oxide was a small increase in lipid hydroper- 
oxide observed. 

Goss et ul.[zll attempted to reconcile these 
discrepancies by demonstrating that bolus 
addition of NO (500pM) to LDL under aerobic 
conditions can cause a mild oxidation that is 

enhanced by contaminating transition metal ions 
in the medium. In the presence of the transition 
metal ion chelator DTPA the enhancement is not 
observed. Under strict anaerobic conditions nitric 
oxide does not oxidize LDL lipid, and oxidation is 
likely due to nitrogen dioxide and dinitrogen 
tetraoxide. It has previously been shown that 
nitrogen dioxide will oxidize unsaturated fatty 
acids.1221 

Reports that nitric oxide can directly react with 
isolated components of the LDL particle[231 are 
also likely due to the oxidative chemistry of 
nitrogen dioxide. For example, a-tocopherol is 
not oxidized by nitric oxide, but is oxidized to the 
quinone by nitrogen dioxide.[241 Interestingly, an 
apparently direct reaction between @-carotene 
and nitric oxide has been demonstrated to form 
a nitroxide by addition of nitric oxide to the con- 
jugated diene moiety.r251 However, nitric oxide, 
when slowly released into solution does not 
result in sigruficant oxidation of @-carotene.["] 

REACTIONS OF PEROXYNITRITE 
WITH LDL 

The first reports demonstrating an oxidative 
reaction of peroxynitrite towards LDL used 
the sydnonimine SIN-1 .119,201 This compound 
simultaneously releases nitric oxide and super- 
oxide, which rapidly react to form peroxyni- 
trite.[26S71 Incubation of LDL with SIN-1, 
resulted in the depletion of LDL antioxidants 
and the formation of both lipid hydroperoxides 
and thiobarbituric acid reactive substances 
(TBARS), indicating lipid peroxidation was 
occurring.[191 In addition, SIN-1 decreased the 
concentration of free amino groups of apo-B 
and increased the net negative charge of the 
lip~protein."~~ These changes are similar to 
those observed when LDL is oxidized by 
copper(II1 ions. 

Later studies using chemically synthesized 
peroxynitrite indicated that peroxynitrite-treated 
LDL is a scavenger for the macrophage scavenger 
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receptor and is therefore potentially athero- 
genic.[28' One of the earliest reactions to occur 
during the oxidation of LDL by SIN-1 is the 
oxidation of a-tocopherol to a-tocopheryl qui- 
none.[291 This reaction also occurs in rat liver 
microsomes[301 and in organic solution.[311 The 
mechanism of reaction appears to be a direct 
two-electron oxidation of a-tocopherol to the a- 
tocopheryl cation, followed by nucleophillic 
addition of OH- to the 8a position.[311 y-toco- 
pherol, a minor component of vitamin E, reacts 
with peroxynitrite to form a nitrated product 
(4-nitro -7-tocopherol) and the orthoquinone, 
t o c ~ r e d . ' ~ ~ ~ ~ ~  The difference in chemistry between 
a- and y-tocopherol is related to the absence of a 
methylgroupatthe4positionofy-tocopherol.More 
recently, peroxynitrite has been shown to oxidize 
apo-B cysteinyl thiols by a lipid peroxidation- 
dependent pathway.[341 

INHIBITION OF LDL OXIDATION 
BY NITRIC OXIDE 

The oxidative modification of LDL is thought to 
be a critical step in the formation of an athero- 
sclerotic lesion.[51 It is hypothesized that LDL that 
migrates to the arterial intima is subject to an 
oxidative stress. This causes oxidation of LDL 
lipid, which ultimately results in a decrease in net 
negative charge of apo-B. Once apo-B is modified, 
LDL is taken up by interstitial macrophages, via 
the scavenger receptor, to form the foam cells that 
are characteristic of early lesion development. 
The subendothelial environment is constantly 
exposed to nitric oxide from the basal activity of 
endothelial nitric oxide synthase. Consequently 
any interactions between nitric oxide and LDL 
may have profound importance to the biological 
chemistry of this lipoprotein. 

The first suggestions that nitric oxide might 
inhibit LDL oxidation came from two reports[20f351 
that endotoxin-stimulated macrophages were 
less able to oxidize LDL than unstimulated cells. 
Endotoxin induces the synthesis of nitric oxide 

synthase, leading to enhanced nitric oxide 
production.[361 In addition, the attenuated ability 
of endotoxin-stimulated macrophages to oxidize 
LDL was reversed by L-N-monomethyl arginine, 
a specific inhibitor of NOS. There are several 
chemical models for the oxidative modification of 
LDL. The two most commonly employed use 
either a copper(I1) salt or an 'azo-initiator' to 
initiate lipid oxidation. One fundamental differ- 
ence between these two methods is that initiation 
of oxidation by copper(I1)-dependent is auto- 
catalytic whereas initiation by azo-initiators is 
effectively linear. The mechanisms by which 
these oxidants initiate lipid peroxidation are 
shown in Scheme 1. 

Catalytic quantities of copper(I1) ions will 
oxidize LDL lipid with characteristic kinetics 
(Figure lp3'] The change in absorbance at 234 nm 
is an easy, and continuous, way to monitor the 
oxidation process. The absorbance change arises 
from the rearrangement of the fatty acid double 

! 
ABAP-OO. 

I 

\ 1  
Lo + LOOH 

\ 

SCHEME 1 Initiation of lipid peroxidation by copper ions and 
ABAP. ABAP decays to give a peroxyl radical (ABAP-OO*) 
which can abstract a hydrogen atom from an unsaturated 
lipid (LH) to give a lipid radical (L=). This radical feeds into 
the lipid peroxidation chain reaction. Copper ions react 
with lipid hydroperoxide to generate lipid peroxyl and 
alkoxyl radicals that can also feed into the peroxidation 
chain reaction. Copper-dependent oxidation is auto-cata- 
lytic as lipid hydroperoxide, the product of lipid peroxi- 
dation, feeds back to copper and re-initiates a chain of 
oxidation. 
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596 N. HOGG AND B. KALYANARAMAN 

bond arrangement, from a non-conjugated diene 
to a conjugated diene, that occurs during lipid 
peroxidation (Scheme 2). The kinetic profile of 
conjugated diene formation can be divided into 
three regions (Figure l).'37] During the first 
period, referred to as the lag period, a low level 
of oxidation occurs. The lag time is due both to 
the endogenous antioxidants, which are con- 
sumed during this period, and to the auto- 
catalytic nature of the reaction. Following the 
lag period, oxidation accelerates to reach a rapid 
and fairly linear rate, in what is often called the 
propagation phase. The maximum rate of the 

A 

C 

B 

D 

Time 

FIGURE 1 Kinetics of LDL oxidation in the presence of differ- 
ent classes of inhibitors. The kinetics of copper-dependent 
LDL oxidation was modeled using kinetic simulation soft- 
ware (see Ref. I211 for details). Simulations were performed 
in the presence of increasing concentrations of four differ- 
ent classes of antioxidant: (A) a metal ion chelator, (8) a 
hydrogen donator, (C) a peroxyl radical scavenger and (D) 
nitric oxide. 

Lipid 
Oxilation , -- _ _  _ _  -___ -_ 

OOH 
Conjugated Dime 

SCHEME 2 Conjugated diene formation during lipid per- 
oxidation. 

propagation phase occurs when the rate of 
initiation equals the rate of termination. The end 
of the propagation phase occurs as a result of 
depletion of either substrate or oxygen, and is 
followed by a complex third phase. During this 
last phase, lipid hydroperoxides are broken down 
to a complex mixture of products including 
aldehydes and  hydrocarbon^.'^^] 

Copper-dependent lipid peroxidation is 
thought to proceed through the reactions shown 
in Eqs. (2)-(6). Redox cycling of copper ions 
results in the 

CU" + LOOH * CU' + LOO. + H' (2) 
Cu++LOOH --+ Cu2++L0. +OH- (3) 

LOO. + LH * LOOH + L- (4) 
L.+ 0 2  + L o o .  (5) 

2L*/LOO* --t Products (6) 

decomposition of lipid hydroperoxides (low 
levels of which are always present in LDL) to 
form lipid alkoxyl and peroxyl radicals (Eqs. (2) 
and (3)) which both feed into the lipid peroxi- 
dation chain reaction (Eqs. (4) and (5)). In the 
absence of antioxidants, chain termination oc- 
curs through radical-radical reactions (Eq. (6)). 

Jnhibitors of lipid peroxidation affect the shape 
of the conjugated diene 

LOO. + AH --+ LOOH + A. 

curve (Figure l).[39rM1 Inhibitors can be divided 
into three main classes: (i) copper chelators, (ii) 
hydrogen atom donors and (iii) peroxyl radical 
scavengers. As shown in Figure lA, antioxidants 
that work through copper chelation, such as 
EDTA, cause an increase in the length of the lag 
period of oxidation and a decrease in the rate of 
oxidation during the propagation phase. The plot 
of lag time vs. concentration for a copper 
chelator is shown in Figure 2. As the concentra- 
tion of free copper approaches zero, the lag 
period approaches infinity. Figure 1B shows the 
typical effect of hydrogen donators (AH), such as 
a-tocopherol on conjugated diene formation. 

(7) 
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NITRIC OXIDE AND LDL 597 

Antioxidant Concentration 
FIGURE 2 Effect of different classes of antioxidant on the lag 
time of LDL oxidation. Lag times, calculated from Figure 1, 
were plotted as a function of antioxidant concentration for 
the four classes of antioxidant. 

These compounds donate a hydrogen atom to the 
peroxyl radical thus breaking the chain of 
propagation (Eq. (7)). As the net change in lipid 
peroxide, due to this reaction, is zero once the 
antioxidant has been consumed oxidation 
proceeds as before. Consequently the length of 
the lag time is a linear function of antioxidant 
concentration (Figure 2). Variations from this 
ideal situation can occur if the antioxidant radical 
has a low ability to initiate peroxidation reaction, 
as has been suggested for rw-to~opherol.[~] 

Peroxyl radical scavengers act by reacting with 
and removing peroxyl radicals (Eq. (8)). This type 
of activity is most likely an attribute of 

(8) LOO* +A* - LOOA 

stable free radicals. The a-tocopheroxyl radical, 
generated from hydrogen donation reactions 
(Eq. (7)), has been suggested to be a peroxyl 
radical scavenger, consequently each a-tocoph- 
erol molecule inhibits two chains of ~xidation.'~'] 
As true peroxyl radical scavengers do not 
regenerate lipid peroxide (cf Eqs. (7) and @)), 

the inhibition profile for these compounds is 
expected to be that in Figure 1C. The non-linear 
dependence of the lag-time on the antioxidant 
concentration (Figure 2) arises from the fact that 
the hydroperoxide concentration is reduced dur- 
ing this time. Consequently, LDL becomes more 
resistant to oxidation by copper during the lag 
time. 

Nitric oxide reacts with peroxyl radicals at near 
diffusion controlled rates1421 and is therefore 
likely to act as a peroxyl radical scavenger 
(Eq. (8)). However, a study of lag-time vs. nitric 
oxide donor concentration gives the profile 
shown in Figure lD.["] Although at low concen- 
trations nitric oxide appears to act as a peroxyl 
radical scavenger, higher concentrations of nitric 
oxide are less effective than would be expected, 
giving a sigmoidal dependence (Figure 2). This 
can be explained if it is assumed that the product 
of the antioxidant reaction (putatively LOO- 
NO[431) is unstable and slowly decays to a 
hydroperoxide or a peroxyl radical.[*'] Conse- 
quently, after the nitric oxide source has been 
depleted re-initiation occurs from the slow break- 
down of the LOONO adduct. Goss et al.[''] 
demonstrated that the sigmoidal dependence 
could be left-shifted by increasing the original 
peroxide content of the LDL. In addition maximal 
inhibition occurs at a rate of nitric oxide release 
that matches the rate of initiation.[&' Conse- 
quently a low, but continuous rate of nitric oxide 
formation is a more potent inhibitor of oxidation 
than a burst of nitric oxide release. 

Nitric oxide will also inhibit lipid oxidation 
initiated by azo-initiators such as ABAP. This was 
first demonstrated in LDL where photoloysis of 
sodium nitroprusside was observed to inhibit 
LDL oxidation.[451 Recently ODonnell et aL[461 
demonstrated, using azo-initiators, that two 
nitric oxide molecules are consumed per chain 
reaction terminated. This stoichiometry suggests 
that the primary product of the reaction between 
nitric oxide and lipid is unstable and breaks 
down to a product that can also be scavenged 
by nitric oxide. 
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598 N. HOGG AND B. KALYANARAMAN 

CONSEQUENCES FOR VASCULAR 
PATHOLOGIES 

Oxidative stress and free radical formation is a 
feature of many cardiovascular pathologies. 
The elevation of vascular superoxide formation 
has been linked to hyper tens i~n '~~ and athero- 
sclerosis.[121 The mechanisms for such elevation 
have been associated with many atherosclerotic 
risk factors such as diabetes,[@' hyperhomocys- 
tienemia,"" and hypercholester~lemia.[*~~~~~~~~~~~ 
In addition, nitric oxide has been shown to be 
a potent antiatherogenic agent that sup- 
presses many elements of the atherosclerotic 
processes.15z1 Such observations have led to the 
hypothesis that alteration of the balance between 
nitric oxide and superoxide generation by vas- 
d a r  cells may contribute to ather~genesis.[~'-~~' 

This hypothesis may be particularly relevant to 
the biological oxidative modification of LDL. As 
reviewed here, nitric oxide is a potent inhibitor of 
LDL oxidation. The low continuous flux of nitric 
oxide generated by the vascular endothelium 
would be expected to suppress such reaction 
in v i m  Only after removal of this antioxidant is 
sub-endothelial LDL oxidation likely to occur. 
In support of this are the observations that 

SCHEME 3 In the absence of superoxide, nitric oxide will 
inhibit lipid oxidation. In the presence of superoxide, nitric 
oxide will be scavenged to form peroxynitrite, which will 
initiate lipid oxidation. The balance between the levels of 
nitric oxide and superoxide becomes a critical determinant 
of whether nitric oxide exhibits pro-oxidant or anti-oxidant 
behavior. 

L-nitroarginine methyl ester, an inhibitor of 
NOS, accelerates the atherosclerotic process in 
animal models. The diffusion limited reaction 
between nitric oxide and superoxide removes the 
antioxidant activity of nitric oxide and generates 
the potent LDL oxidant, peroxynitrite (Scheme 3). 
The formation of peroxynitrite usually results in 
protein tyrosyl residue nitration. It is of interest to 
note that nitrotyrosine has been observed in 
atherosclerotic  lesion^[^^'^^] and peroxynitrite 
has been implicated in the pathology of athero- 
sclerosis.[571 
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